Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Aging (Albany NY) ; 16(6): 5370-5386, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38484139

RESUMEN

Intervertebral disc degeneration (IVDD) has been considered a major cause of low back pain. Therefore, further molecular subtypes of IVDD and identification of potential critical genes are urgently needed. First, consensus clustering was used to classify patients with IVDD into two subtypes and key module genes for subtyping were identified using weighted gene co-expression network analysis (WGCNA). Then, key module genes for the disease were identified by WGCNA. Subsequently, SVM and GLM were used to identify hub genes. Based on the above genes, a nomogram was constructed to predict the subtypes of IVDD. Finally, we find that ROM1 is lowered in IVDD and is linked to various cancer prognoses. The present work offers innovative diagnostic and therapeutic biomarkers for molecular subtypes of IVDD.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Humanos , Anillo Fibroso/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Transcriptoma
2.
Aging (Albany NY) ; 16(6): 5249-5263, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38460960

RESUMEN

BACKGROUND: The Golgi apparatus (GA) is crucial for protein synthesis and modification, and regulates various cellular processes. Dysregulation of GA can lead to pathological conditions like neoplastic growth. GA-related genes (GARGs) mutations are commonly found in cancer, contributing to tumor metastasis. However, the expression and prognostic significance of GARGs in osteosarcoma are yet to be understood. METHODS: Gene expression and clinical data of osteosarcoma patients were obtained from the TARGET and GEO databases. A consensus clustering analysis identified distinct molecular subtypes based on GARGs. Discrepancies in biological processes and immunological features among the subtypes were explored using GSVA, ssGSEA, and Metascape analysis. A GARGs signature was constructed using Cox regression. The prognostic value of the GARGs signature in osteosarcoma was evaluated using Kaplan-Meier curves and a nomogram. RESULTS: Two GARG subtypes were identified, with Cluster A showing better prognosis, immunogenicity, and immune cell infiltration than Cluster B. A novel risk model of 3 GARGs was established using the TARGET dataset and validated with independent datasets. High-risk patients had poorer overall survival, and the GARGs signature independently predicted osteosarcoma prognosis. Combining risk scores and clinical characteristics in a nomogram improved prediction performance. Additionally, we discovered Stanniocalcin-2 (STC2) as a significant prognostic gene highly expressed in osteosarcoma and potential disease biomarker. CONCLUSIONS: Our study revealed that patients with osteosarcoma can be divided into two GARGs subgroups. Furthermore, we have developed a GARGs prognostic signature that can accurately forecast the prognosis of osteosarcoma patients.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Pronóstico , Osteosarcoma/genética , Nomogramas , Aparato de Golgi , Neoplasias Óseas/genética
3.
Inorg Chem ; 63(14): 6173-6183, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38530927

RESUMEN

Unfolding the solution coordination chemistry of high-valent transuranium elements with the "CHON"-type ligands is important to understand the fundamental chemistry of actinides and to design more efficient extractants for partitioning of transuranium elements in advanced nuclear fuel cycles. Here, the complexation of a hexavalent neptunyl ion (NpO22+ or Np(VI)) with oxydiacetic acid (ODA) has been systematically investigated in comparison with its amide analogues N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) and N,N,N',N'-tetramethyl-3-oxa-glutaramide (TMOGA) both experimentally and computationally. The formation of both 1:1 and 1:2 complexes between Np(VI) and the three ligands was identified by spectrophotometry, and their stability constants were obtained and compared with those of hexavalent U(VI) and Pu(VI). The corresponding bonding nature is elucidated by using energy decomposition analysis (EDA), electrostatic potential (ESP), ELF contours, and natural orbitals for chemical valence (NOCV) methods, which shows that the Np-O bonds are essentially ionic in character and the unoccupied 6d orbitals of Np play a key role in enhancing the covalent interactions between Np(VI) and the three ligands.

4.
Aging (Albany NY) ; 16(4): 3694-3715, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38372699

RESUMEN

BACKGROUND: Osteoporosis is a common endocrine metabolic bone disease, which may lead to severe consequences. However, the unknown molecular mechanism of osteoporosis, the observable side effects of present treatments and the inability to fundamentally improve bone metabolism seriously restrict the impact of prevention and treatment. The study aims to identify potential biomarkers from osteoclast progenitors, specifically peripheral blood monocytes on predicting the osteoporotic phenotype. METHODS: Datasets were obtained from Gene Expression Omnibus (GEO). Based on the differentially expressed genes (DEGs) and GSEA results, GO and KEGG analyses were performed using the DAVID database and Metascape database. PPI network, TF network, drug-gene interaction network, and ceRNA network were established to determine the hub genes. Its osteogenesis, migration, and proliferation abilities in bone marrow mesenchymal stem cells (BMSCs) were validated through RT-qPCR, WB, ALP staining, VK staining, wound healing assay, transwell assay, and CCK-8 assay. RESULTS: A total of 63 significant DEGs were screened. Functional and pathway enrichment analysis discovered that the functions of the significant DEGs (SDEGs) are mainly related to immunity and metal ions. A comprehensive evaluation of all the network analyses, PMAIP1 was defined as osteoporosis's core gene. This conclusion was further confirmed in clinical cohort data. A series of experiments demonstrated that the PMAIP1 gene can promote the osteogenesis, migration and proliferation of BMSC cells. CONCLUSIONS: All of these outcomes showed a new theoretical basis for further research in the treatment of osteoporosis, and PMAIP1 was identified as a potential biomarker for osteoporosis diagnosis and treatment.


Asunto(s)
Perfilación de la Expresión Génica , Osteoporosis , Humanos , Perfilación de la Expresión Génica/métodos , Biomarcadores , Osteoporosis/diagnóstico , Osteoporosis/tratamiento farmacológico , Osteoporosis/genética , Redes Reguladoras de Genes , Cicatrización de Heridas
5.
Sci Rep ; 13(1): 21316, 2023 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044363

RESUMEN

Intervertebral disc degeneration (IDD) is the primary cause of neck and back pain. Obesity has been established as a significant risk factor for IDD. The objective of this study was to explore the molecular mechanisms affecting obesity and IDD by identifying the overlapping crosstalk genes associated with both conditions. The identification of specific diagnostic biomarkers for obesity and IDD would have crucial clinical implications. We obtained gene expression profiles of GSE70362 and GSE152991 from the Gene Expression Omnibus, followed by their analysis using two machine learning algorithms, least absolute shrinkage and selection operator and support vector machine-recursive feature elimination, which enabled the identification of C-X-C motif chemokine ligand 16 (CXCL16) as a shared diagnostic biomarker for obesity and IDD. Additionally, gene set variant analysis was used to explore the potential mechanism of CXCL16 in these diseases, and CXCL16 was found to affect IDD through its effect on fatty acid metabolism. Furthermore, correlation analysis between CXCL16 and immune cells demonstrated that CXCL16 negatively regulated T helper 17 cells to promote IDD. Finally, independent external datasets (GSE124272 and GSE59034) were used to verify the diagnostic efficacy of CXCL16. In conclusion, a common diagnostic biomarker for obesity and IDD, CXCL16, was identified using a machine learning algorithm. This study provides a new perspective for exploring the possible mechanisms by which obesity impacts the development of IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Humanos , Degeneración del Disco Intervertebral/diagnóstico , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Transcriptoma , Factores de Riesgo , Obesidad/metabolismo , Biomarcadores/metabolismo , Disco Intervertebral/metabolismo , Quimiocina CXCL16/genética , Quimiocina CXCL16/metabolismo
6.
Aging (Albany NY) ; 15(22): 12794-12816, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37976137

RESUMEN

Mitochondria play a vital role in osteosarcoma. Therefore, the purpose of this study was to investigate the potential role of mitochondrial-related genes (MRGs) in osteosarcoma. Based on 92 differentially expressed MRGs, osteosarcoma samples were divided into two subtypes using the nonnegative matrix factorization (NMF). Ultimately, a univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox analysis were performed to construct a prognostic risk model. The single-sample gene set enrichment analysis assessed the immune infiltration characteristics of osteosarcoma patients. Finally, we identified an osteosarcoma biomarker, malonyl-CoA decarboxylase (MLYCD), which showed downregulation. Osteosarcoma cells proliferation, migration, and invasion were effectively inhibited by the overexpression of MLYCD. Our findings will help us to further understand the molecular mechanisms of osteosarcoma and contribute to the discovery of new diagnostic biomarkers and therapeutic targets.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Pronóstico , Osteosarcoma/genética , Algoritmos , Mitocondrias/genética , Neoplasias Óseas/genética
7.
Sci Rep ; 13(1): 17521, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845358

RESUMEN

Studying the molecular mechanisms and regulatory functions of genes is crucial for exploring new approaches and tactics in cancer therapy. Studies have shown that the aberrant expression of PHF5A in tumors is linked to the origin and advancement of multiple cancers. However, its role in diagnosis, prognosis, and immunological prediction has not been comprehensively investigated in a pan-cancer analysis. Using several bioinformatic tools, we conducted a systematic examination of the potential carcinogenesis of PHF5A in various tumors from multiple aspects. Our analysis indicated that PHF5A expression varied between normal and tumor tissues and was linked to clinical diagnosis and prognosis in various cancers. The results confirmed a notable variation in the levels of PHF5A promoter methylation among several types of primary tumor and normal tissues and methylation of the PHF5A promoter played a guiding role in prognosis in some cancers. According to our findings, PHF5A played a critical role in tumor immunity and it might be an excellent target for anticancer immunotherapy. To sum up, PHF5A can be used in pan-cancer diagnostics, prognostics, and immunotherapy.


Asunto(s)
Neoplasias , Humanos , Pronóstico , Biomarcadores , Neoplasias/diagnóstico , Neoplasias/genética , Carcinogénesis , Biología Computacional , Transactivadores , Proteínas de Unión al ARN
8.
Aging (Albany NY) ; 15(19): 10272-10290, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37796192

RESUMEN

Cancer-intrinsic immune evasion (IE) to cells is a critical factor in tumour growth and progression, yet the molecular characterization of IE genes (IEGs) in osteosarcoma remains underexplored. In this study, 85 osteosarcoma patients were comprehensively analyzed based on 182 IEGs, leading to the identification of two IE clusters linked to distinct biological processes and clinical outcomes. In addition, two IE clusters demonstrated diverse immune cell infiltration patterns, with IEGcluster A displaying increased levels compared to IEGcluster B. Moreover, an IE score was identified as an independent prognostic factor and nomogram may serve as a practical tool for the individual prognostic evaluation of patients with osteosarcoma. Finally, GBP1, a potential biomarker with high expression in osteosarcoma was identified. The findings of this study highlight the presence of two IE clusters, each associated with differing patient outcomes and immune infiltration properties. The IE score may serve to assess individual patient IE characteristics, enhance comprehension of immune features, and guide more efficacious treatment approaches.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Evasión Inmune , Microambiente Tumoral/genética , Pronóstico , Osteosarcoma/genética , Neoplasias Óseas/genética
9.
Cancer Cell Int ; 23(1): 215, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752544

RESUMEN

BACKGROUND: The aim of this study was to determine the underlying potential mechanisms and function of DIO3OS, a lincRNA in osteosarcoma and clarify that DIO3OS can be used as a potential diagnostic biomarker and immunotherapeutic target. METHODS: The expression matrix data and clinical information were obtained from XENA platform of UCSC and GEO database as the test cohorts. The external validation cohort was collected from our hospital. Bioinformatics analysis was used to annotate the biological function of DIO3OS. Immune infiltration and immune checkpoint analysis were applied to evaluate whether DIO3OS can be used as an immunotherapeutic target. ROC curves and AUC were established to assess the diagnostic value of DIO3OS for differentiating patients from other subtypes sarcoma. The expression analysis was detected by qRT-PCR, western blot, and immunohistochemical. Wound healing assay and Transwell assay were applied to determine the migration and invasion function of DIO3OS in osteosarcoma cell lines. The tail vein injection osteosarcoma cells metastases model was used in this research. RESULTS: High expression of DIO3OS was identified as a risk lincRNA for predicting overall survival of osteosarcoma in test cohort. The outcomes of experiments in vitro and in vivo showed that low expression of DIO3OS limited osteosarcoma tumor metastasis with inhibiting TGF-ß signaling pathway. Immune checkpoint genes (CD200 and TNFRSF25) expressions were inhibited in the low DIO3OS expression group. The DIO3OS expression can be applied to reliably distinguish osteosarcoma from lipomatous neoplasms, myomatous neoplasms, nerve sheath tumors, and synovial-like neoplasms. This result was further validated in the validation cohort. CONCLUSIONS: In conclusion, our outcomes indicated that DIO3OS is a potential diagnostic and prognostic biomarker of osteosarcoma, emphasizing its potential as a target of immunotherapy to improve the treatment of osteosarcoma through TGF-ß signaling pathway. TRIAL REGISTRATION NUMBER: The present retrospectively study was approved by the Ethics Committee of The Second Affiliated Hospital of Nanchang University [Review (2020) No. (115)].

10.
Nat Chem ; 15(11): 1581-1590, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37550390

RESUMEN

Although their zero- to two-dimensional counterparts are well known, three-dimensional chiral hybrid organic-inorganic perovskite single crystals have remained difficult because they contain no chiral components and their crystal phases belong to centrosymmetric achiral point groups. Here we report a general approach to grow single-crystalline 3D lead halide perovskites with chiroptical activity. Taking MAPbBr3 (MA, methylammonium) perovskite as a representative example, whereas achiral MAPbBr3 crystallized from precursors in solution by inverse temperature crystallization method, the addition of micro- or nanoparticles as nucleating agents promoted the formation of chiral crystals under a near equilibrium state. Experimental characterization supported by calculations showed that the chirality of the 3D APbX3 (where A is an ammonium ion and X is Cl, Br or mixed Cl-Br or Br-I) perovskites arises from chiral patterns of the A-site cations and their interaction with the [PbX6]4- octahedra in the perovskite structure. The chiral structure obeys the lowest-energy principle and thereby thermodynamically stable. The chiral 3D hybrid organic-inorganic perovskites served in a circularly polarized light photodetector prototype successfully.

11.
Exp Ther Med ; 26(1): 312, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37273754

RESUMEN

Cartilage endplate (CEP) degeneration is considered one of the major causes of intervertebral disc degeneration (IDD), which causes non-specific neck and lower back pain. In addition, several non-coding RNAs (ncRNAs), including long ncRNAs, microRNAs and circular RNAs have been shown to be involved in the regulation of various diseases. However, the particular role of ncRNAs in CEP remains unclear. Identifying these ncRNAs and their interactions may prove to be is useful for the understanding of CEP health and disease. These RNA molecules regulate signaling pathways and biological processes that are critical for a healthy CEP. When dysregulated, they can contribute to the development disease. Herein, studies related to ncRNAs interactions and regulatory functions in CEP are reviewed. In addition, a summary of the current knowledge regarding the deregulation of ncRNAs in IDD in relation to their actions on CEP cell functions, including cell proliferation, apoptosis and extracellular matrix synthesis/degradation is presented. The present review provides novel insight into the pathogenesis of IDD and may shed light on future therapeutic approaches.

12.
Int J Mol Sci ; 24(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37240287

RESUMEN

Although whole genome sequencing, genetic variation mapping, and pan-genome studies have been done on a large group of cucumber nuclear genomes, organelle genome information is largely unclear. As an important component of the organelle genome, the chloroplast genome is highly conserved, which makes it a useful tool for studying plant phylogeny, crop domestication, and species adaptation. Here, we have constructed the first cucumber chloroplast pan-genome based on 121 cucumber germplasms, and investigated the genetic variations of the cucumber chloroplast genome through comparative genomic, phylogenetic, haplotype, and population genetic structure analysis. Meanwhile, we explored the changes in expression of cucumber chloroplast genes under high- and low-temperature stimulation via transcriptome analysis. As a result, a total of 50 complete chloroplast genomes were successfully assembled from 121 cucumber resequencing data, ranging in size from 156,616-157,641 bp. The 50 cucumber chloroplast genomes have typical quadripartite structures, consisting of a large single copy (LSC, 86,339-86,883 bp), a small single copy (SSC, 18,069-18,363 bp), and two inverted repeats (IRs, 25,166-25,797 bp). Comparative genomic, haplotype, and population genetic structure results showed that there is more genetic variation in Indian ecotype cucumbers compared to other cucumber cultivars, which means that many genetic resources remain to be explored in Indian ecotype cucumbers. Phylogenetic analysis showed that the 50 cucumber germplasms could be classified into 3 types: East Asian, Eurasian + Indian, and Xishuangbanna + Indian. The transcriptomic analysis showed that matK were significantly up-regulated under high- and low-temperature stresses, further demonstrating that cucumber chloroplasts respond to temperature adversity by regulating lipid metabolism and ribosome metabolism. Further, accD has higher editing efficiency under high-temperature stress, which may contribute to the heat tolerance. These studies provide useful insight into genetic variation in the chloroplast genome, and established the foundation for exploring the mechanisms of temperature-stimulated chloroplast adaptation.


Asunto(s)
Cucumis sativus , Genoma del Cloroplasto , Filogenia , Cucumis sativus/genética , Temperatura , Transcriptoma , Cloroplastos/genética , Perfilación de la Expresión Génica , Variación Genética
13.
Cell Death Dis ; 14(2): 118, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781836

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is an upper gastrointestinal cancer with high morbidity and mortality. New strategies are urgently needed to prolong patients' survival. Through screening FDA-approved drugs, we found dasabuvir, a drug approved for hepatitis C virus (HCV) treatment, suppressed ESCC proliferation. Dasabuvir could inhibit the growth of ESCC cells in a time and dose-dependent manner and arrested cell cycle at the G0/G1 phase. The antitumor activity was further validated in vivo using patient-derived xenograft tumor models. In terms of mechanism, we unveil that dasabuvir is a Rho-associated protein kinase 1 (ROCK1) inhibitor. Dasabuvir can bind to ROCK1 and suppress its kinase activity, thus downregulating the phosphorylation of ERK1/2 by ROCK1 and the expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1. These results provide evidence that dasabuvir suppresses ESCC growth in vivo and in vitro through blocking ROCK1/ERK signaling pathway.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Proliferación Celular , 2-Naftilamina/uso terapéutico , Línea Celular Tumoral , Apoptosis , Quinasas Asociadas a rho
14.
Front Bioeng Biotechnol ; 11: 1073238, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845177

RESUMEN

Quiescence is a cellular state of reversible growth arrest required to maintain homeostasis and self-renewal. Entering quiescence allows the cells to remain in the non-dividing stage for an extended period of time and enact mechanisms to protect themselves from damage. Due to the extreme nutrient-deficient microenvironment in the intervertebral disc (IVD), the therapeutic effect of cell transplantation is limited. In this study, nucleus pulposus stem cells (NPSCs) were preconditioned into quiescence through serum starvation in vitro and transplanted to repair intervertebral disc degeneration (IDD). In vitro, we investigated apoptosis and survival of quiescent NPSCs in a glucose-free medium without fetal bovine serum. Non-preconditioned proliferating NPSCs served as controls. In vivo, the cells were transplanted into a rat model of IDD induced by acupuncture, and the intervertebral disc height, histological changes, and extracellular matrix synthesis were observed. Finally, to elucidate the mechanisms underlying the quiescent state of NPSCs, the metabolic patterns of the cells were investigated through metabolomics. The results revealed that quiescent NPSCs decreased apoptosis and increased cell survival when compared to proliferating NPSCs both in vitro and in vivo, as well as maintained the disc height and histological structure significantly better than that by proliferating NPSCs. Furthermore, quiescent NPSCs have generally downregulated metabolism and reduced energy requirements in response to a switch to a nutrient-deficient environment. These findings support that quiescence preconditioning maintains the proliferation and biological function potential of NPSCs, increases cell survival under the extreme environment of IVD, and further alleviates IDD via adaptive metabolic patterns.

15.
Oncogene ; 42(15): 1209-1223, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841865

RESUMEN

Targeted therapy attempts are needed to enhance esophageal squamous cell carcinoma (ESCC) patients' overall survival and satisfaction of life. Nuclear factor erythroid 2-related factor 2 (NRF2), as a high-confidence cancer driver gene, controls the antioxidant response, metabolic balance and redox homeostasis in cancer and is regarded as a potent molecular target for cancer treatment. Here, we attempted to find a new NRF2 inhibitor and study the underlying molecular mechanism in ESCC. We found that up-regulated NRF2 protein was negatively correlated with patient prognosis and promoted tumor proliferation in ESCC. Moreover, Pizotifen malate (PZM), a FDA-approved medication, bound to the Neh1 domain of NRF2 and prevented NRF2 protein binding to the ARE motif of target genes, suppressing transcription activity of NRF2. PZM treatment suppressed tumor development in ESCC PDX model by inducing ferroptosis via down-regulating the transcription of GPX4, GCLC, ME1 and G6PD. Our study illustrates that the over expression of NRF2 indicates poor prognosis and promotes tumor proliferation in ESCC. PZM, as a novel NRF2 inhibitor, inhibits the tumor growth by inducing ferroptosis and elucidates a potent NRF2-based therapy strategy for patients with ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Ferroptosis , Humanos , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Malatos/uso terapéutico , Pizotilina/uso terapéutico , Carcinoma de Células Escamosas/patología , Ferroptosis/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
16.
Cancer Cell Int ; 22(1): 322, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36244998

RESUMEN

Osteosarcoma is a highly malignant tumor, with very high disability and fatality rates. However, the overall prognosis is not optimistic. Pyroptosis is a newly discovered cell death modality accompanied by inflammation, which is closely related to varieties of cancers. In this study, the RNA-seq data were downloaded from public databases, the differences in the expression of the pyroptosis-related genes (PRGs) were identified, and the six PRGs signature was established through the univariate and LASSO Cox analysis. The patients were grouped according to the PRGs signature, and the prognosis between the two groups was further compared. In addition, a ten pyroptosis-related lncRNAs (PRLs) prognostic signature was also constructed. Through functional analysis of the differentially expressed genes (DEGs), the immune-related pathways were found to be enriched. The Pearson correlation analysis showed a strong correlation between the pyroptosis-related biomarkers. Finally, we identified a promising biomarker, CHMP4C, which is highly expressed in osteosarcoma. Overexpression of CHMP4C promoted the proliferation, migration and invasion of the osteosarcoma cell. Our results thus provide new evidence for exploring prognostic biomarkers and therapeutic targets of osteosarcoma.

17.
Mol Ther Oncolytics ; 27: 61-72, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36284716

RESUMEN

Epidemiological and mechanistic studies suggest that some US Food and Drug Administration (FDA)-approved drugs can reduce the incidence of cancer and inhibit tumor growth. Therefore, investigating FDA-approved drugs for cancer chemoprevention is a promising strategy. In this study, we screened FDA-approved drugs and found that azelnidipine, a Ca channel blocker widely used in the treatment of hypertension, inhibits the growth of esophageal squamous cell carcinoma (ESCC) in vitro and in vivo. We identified that MEK1/2 were direct targets of azelnidipine through pull-down assay and cellular thermal shift assay. Azelnidipine could suppress kinase activity of MEK1/2 through in vitro kinase assay. Hypophosphorylation of ERK1/2 decreased the levels of Cyclin D1/CDK6 in ESCC cells after azelnidipine treatment. More importantly, azelnidipine, like trametinib, inhibited the growth of ESCC in vivo. In conclusion, azelnidipine, a novel dual MEK1/2 inhibitor, exerted antitumor effects against ESCC cell lines and patient-derived xenograft in ESCC.

18.
Chem Sci ; 13(29): 8518-8525, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35974750

RESUMEN

Versatile graphene-like two-dimensional materials with s-, p- and d-block elements have aroused significant interest because of their extensive applications while there is a lack of such materials with f-block elements. Herein we report a unique one composed of the f-block element moiety of uranyl (UO2 2+) through a global-minimum structure search. Its geometry is found to be similar to that of graphene with a honeycomb-like hexagonal unit composed of six uranyl ligands, where each uranyl is bridged by two superoxido groups and a pair of hydroxyl ligands. All the uranium and bridging oxygen atoms form an extended planar 2D structure, which shows thermodynamic, kinetic and thermal stabilities due to σ/π bonding as well as electrostatic interactions between ligands. Each superoxido ligand has one unpaired (2pπ*)1 electron and is antiferromagnetically coupled through uranyl bridges with 2pπ*-5f δ -2pπ* superexchange interactions, forming a rare type of one-dimensional Heisenberg chain with p-orbital antiferromagnetism, which might become valuable for application in antiferromagnetic spintronics.

19.
Cancers (Basel) ; 14(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35892850

RESUMEN

Gastric cancer (GC) ranks fifth in global incidence and fourth in mortality. The current treatments for GC include surgery, chemotherapy and radiotherapy. Although treatment strategies for GC have been improved over the last decade, the overall five-year survival rate remains less than 30%. Therefore, there is an urgent need to find novel therapeutic or preventive strategies to increase GC patient survival rates. In the current study, we found that tegaserod maleate, an FDA-approved drug, inhibited the proliferation of gastric cancer cells, bound to MEK1/2 and suppressed MEK1/2 kinase activity. Moreover, tegaserod maleate inhibited the progress of gastric cancer by depending on MEK1/2. Notably, we found that tegaserod maleate suppressed tumor growth in the patient-derived gastric xenograft (PDX) model. We further compared the effect between tegaserod maleate and trametinib, which is a clinical MEK1/2 inhibitor, and confirmed that tegaserod maleate has the same effect as trametinib in inhibiting the growth of GC. Our findings suggest that tegaserod maleate inhibited GC proliferation by targeting MEK1/2.

20.
Front Vet Sci ; 9: 843514, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464353

RESUMEN

The purpose of this study is to compare five protocols of estrous synchronization for Hu ewes to obtain the most effective and economical protocol, to apply the advantageous scheme in large-scale sheep farming. Healthy multiparous Hu ewes (n = 150) were randomly divided into five groups, and all ewes were administered fluorogestone acetate (FGA, 45 mg) vaginal sponge. The sponges of the first three groups (Groups I, II, and III) were removed on the 11th day, and 0.1 mg of PGF2α was injected intramuscularly on the ninth day. Group I received 6 µg of gonadotropin-releasing hormone (GnRH) by intramuscular injection at 36th h after withdrawal of the sponge. Group II was injected 330 IU of pregnant mare serum gonadotropin (PMSG) on the ninth day. The combination of 6 µg of GnRH and 330 IU of PMSG was treated in Group III at the same time as Group I and Group II. The sponges of the latter two groups (Groups IV and V) were removed on the 13th day, and 330 IU of PMSG was injected intramuscularly simultaneously. PGF2α (0.1 mg) was administered on the 12th day in Group IV. All ewes were detected for estrus at 24, 36, 48, 60, and 72 h after the sponge removal. The loss of sponge and vaginitis was recorded when the sponge was withdrawn. Cervical artificial insemination (AI) was performed with fresh semen of Dorper rams diluted with skimmed milk. After 30 days of insemination, the conception was detected with a veterinary B-ultrasound scanner. The lambing status of all ewes and the cost of drugs for estrous synchronization in each group were recorded. The results showed the following: (1) on the whole, the average percentage of estrous ewes in the period of 24-36 h and 36-48 h after removal was significantly higher than other three periods and that of the period of 60-72 h was significantly lower than the first three periods after removal; (2) there was no significant difference in percentages of estrous ewes in any of the five time periods, sponge loss rate, vaginitis rate, total percentage of estrous ewes, conception rate, single lambing rate, twinning rate, and multiple lambing rate of ewes among five protocols; (3) total percentage of estrous ewes and conception rate were more than or equal to 80% in the Groups II and III, and the twinning lamb rate of the Group II protocol was 70%; (4) there was no difference in lambing rate of ewes among Groups II, III, IV, and V; (5) the Group III had the highest drug cost of 22.5 CNY. In conclusion, considering the lambing rate, twinning lamb rate, and drug cost for estrous synchronization, Group II was the most advisable for application and promotion in large-scale sheep farms among these five protocols of estrus synchronization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...